Science Inventory

Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires

Citation:

Pamela S., R., H. Guo, P. Campuzano-Jost, J. Jimenez, G. Wolfe, R. Bennett, I. Bourgeois, J. Crounse, J. Dibb, J. DiGangi, G. Diskin, M. Dollner, E. Gargulinski, S. Hall, H. Halliday, T. Hanisco, R. Hannun, J. Liao, R. Moore, B. Nault, J. Nowak, J. Peischl, C. Robinson, T. Ryerson, K. Sanchez, M. Schoberl, A. Soja, J. St. Clair, K. Thornhill, K. Ullmann, P. Wennberg, B. Weinzierl, E. Wiggins, E. Winstead, AND A. Rollins. Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires. Atmospheric Chemistry and Physics. Copernicus Publications, Katlenburg-Lindau, Germany, 22:15603-15620, (2022). https://doi.org/10.5194/acp-22-15603-2022

Impact/Purpose:

Measurements from fires measured with an instrumented airborne platform are used to calculate emission factors for sulfur dioxide. These measurements and calculations are important for understanding the chemical evolution of sulfur in wildfire emissions, and for constrining the modeling of sulfur containing air pollutants related to wildfire activity. 

Description:

Fires emit sufficient sulfur to affect local and regional air quality and climate. This study analyzes SO2 emission factors and variability in smoke plumes from US wildfires and agricultural fires, as well as their relationship to sulfate and hydroxymethanesulfonate (HMS) formation. Observed SO2 emission factors for various fuel types show good agreement with the latest reviews of biomass burning emission factors, producing an emission factor range of 0.47–1.2 g SO2 kg−1 C. These emission factors vary with geographic location in a way that suggests that deposition of coal burning emissions and application of sulfur-containing fertilizers likely play a role in the larger observed values, which are primarily associated with agricultural burning. A 0-D box model generally reproduces the observed trends of SO2 and total sulfate (inorganic + organic) in aging wildfire plumes. In many cases, modeled HMS is consistent with the observed organosulfur concentrations. However, a comparison of observed organosulfur and modeled HMS suggests that multiple organosulfur compounds are likely responsible for the observations but that the chemistry of these compounds yields similar production and loss rates as that of HMS, resulting in good agreement with the modeled results. We provide suggestions for constraining the organosulfur compounds observed during these flights, and we show that the chemistry of HMS can allow organosulfur to act as an S(IV) reservoir under conditions of pH > 6 and liquid water content >10−7 g sm−3. This can facilitate long-range transport of sulfur emissions, resulting in increased SO2 and eventually sulfate in transported smoke.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:12/13/2022
Record Last Revised:04/30/2024
OMB Category:Other
Record ID: 361297